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Società Italiana di Fisica
Springer-Verlag 2001

Aging effects and dynamic scaling in the 3D Edwards-Anderson
spin glasses: a comparison with experiments

M. Picco1, F. Ricci-Tersenghi2,a, and F. Ritort3
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Abstract. We present a detailed study of the scaling behavior of correlations functions and AC susceptibil-
ity relaxations in the aging regime in three-dimensional spin glasses. The agreement between simulations
and experiments is excellent confirming the validity of the full aging scenario with weak sub-aging effects.

PACS. 75.10.Nr Spin-glass and other random models – 75.40.Gb Dynamic properties (dynamic
susceptibility, spin waves, spin diffusion, dynamic scaling, etc.) – 75.40.Mg Numerical simulation studies

1 Introduction

There is a great interest in the understanding of dynam-
ical effects in spin glasses. These include magnetization
relaxation, aging and temperature change protocols [1–5].
The study of these effects may clarify the nature of spatial
effects and coarsening phenomena in spin glasses, an issue
which remains still poorly understood.

In this paper we present a detailed study of magneti-
zation relaxation phenomena and aging effects in three-
dimensional Edwards-Anderson spin glasses. Our primary
goal is to check the validity of the full t/tw scaling behav-
ior in correlation functions as well as identifying possible
sources of corrections to that behavior by comparing to
experimental data. Dynamical experiments in spin glasses
include magnetic relaxation and AC measurements. Here
we will focus our attention on correlation function and
AC susceptibility relaxations. The advantage of studying
correlations is that these are easy to evaluate numerically
being also tightly related to thermoremanent magnetiza-
tion relaxation experiments. On the other hand, AC relax-
ations can be directly compared to experimental results
and, to the best of our knowledge, no results appeared on
this point in the literature.

There exist many works on simulations in the litera-
ture [6–9] studying correlations or remanent magnetiza-
tion relaxations and this part of the topic that we inves-
tigate here is certainly not new. What has never been
considered in detail in the past and merits further investi-
gation is the explicit comparison between simulations and
experiments. Having the experimental results in mind we
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have tried to apply the same scaling plots used by the
experimentalists to our numerical data. This may serve
as a valuable guide to better understand what properties
are generic to spin glasses and what coarsening scenario
accounts for the collected experimental data.

Magnetic relaxation (or correlation function) and AC
experiments give equivalent information, the advantage of
using AC experiments is that they constitute a very sensi-
tive tool to detect dissipative processes. When measuring
correlations the external time scale tw is fixed by the time
elapsed after quenching below Tc while in AC experiments
the external time scale is fixed by the inverse of the fre-
quency of the AC field. In a full scaling scenario, in the
first class of experiments the relevant scaling variable is
t/tw while in the second class it is ωt. In what follows we
check the validity of this simple scaling behavior identify-
ing possible sources of corrections.

2 The model and the observables

The Edwards-Anderson model [10] is defined by the fol-
lowing Hamiltonian

H = −
∑
(i,j)

Jijσiσj − h
V∑
i=1

σi, (1)

where the indices i, j run from 1 to V , the σi are Ising spins
(σi = ±1) and the pairs (i, j) identify nearest neighbors
in a three-dimensional lattice. The exchange couplings Jij
are taken from a random distribution. The simplest choice
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is a Gaussian distribution with zero average and finite
variance,

P(J) =
(

1
2π

) 1
2

exp
(
−J

2

2

)
. (2)

This model displays a spin glass transition at finite
temperature Tc ' 0.95 [11,12]. A Monte Carlo step cor-
responds to a sweep over V randomly chosen spins of the
lattice. Monte Carlo simulations of (1) use random updat-
ing of the spins with the Metropolis algorithm. Dynamical
experiments use very large lattices (typical sizes are in the
range L = 20–100) with negligible finite-size effects for the
largest sizes (L = 64 for magnetization relaxation exper-
iments and L = 100 for AC experiments). Correlation
function simulations have been done on a special purpose
machine APE100 [13] for sizes 643 and averaged over 10
samples. AC experiments were done for a single sample on
a Linux cluster of PC’s for size L = 100.

Relaxation measurements are done applying a uniform
magnetic field and measuring the decay of the thermore-
manent magnetization (hereafter denoted by TRM), or
equivalently, the growth of the zero-field cooled (ZFC)
magnetization. The typical experiment consists in the fol-
lowing. A sample is fast quenched below the spin glass
transition temperature and let to relax for a waiting time
tw. Then a uniform small magnetic field h is applied and
the growth of the magnetization measured,

χZFC(tw, tw + t) =
1
V h

V∑
i=1

σi(tw + t). (3)

Another quantity of interest related to the magnetiza-
tion which can be numerically investigated is the two-time
correlation defined by

C(tw, tw + t) =
1
V

V∑
i=1

σi(tw)σi(tw + t). (4)

The interest of studying correlations instead of zero-
field cooled magnetizations is that they yield the same
dynamical information. Indeed in the stationary regime
they are related through the fluctuation-dissipation theo-
rem (FDT)

χZFC(t) =
1− C(t)

T
· (5)

In AC experiments an oscillating magnetic field h(t) =
h0 cos(2πωt) of frequency ω = 1

P , where P is the period,
is applied to the system and the magnetization measured
as a function of time

M(t) = M0 cos(2πωt+ φ), (6)

whereM0 is the intensity of the magnetization and φ is the
dephasing between the magnetization and the field. The
origin of the dephasing is dissipation in the system which
prevents the magnetization to follow the oscillations of the

magnetic field. From the magnetization one can obtain the
in-phase and out-of-phase susceptibilities defined as

χ′ =
M0 cos(φ)

h0
=

2
∫ P

0 M(t) cos(2πωt)dt
h0

, (7)

χ′′ =
M0 sin(φ)

h0
=

2
∫ P

0
M(t) sin(2πωt)dt

h0
· (8)

The dephasing φ measures the rate of dissipation in the
system and is given by

tan(φ) =
χ′′

χ′
· (9)

In numerical simulations the in-phase and out-of-phase
susceptibilities are computed by averaging the right-hand
side in equations (7, 8) over several periods P = 1

ω . This
means a very large measurement time for low frequencies
for both experiments and simulations.

In the numerical simulations (both in DC or AC exper-
iments) the intensity of the probing fields cannot be arbi-
trarily small because of the weakness of the signal in com-
parison to other source of fluctuations such as finite-size
effects (which induce finite-volume statistical fluctuations
for extensive quantities, like the susceptibility). Conse-
quently, the intensities of the probing magnetic fields used
in numerical simulations are much larger than the corre-
sponding experimental ones (between 50 and 500 times
larger). As we will comment later, we do not believe that
this leads to conflicting results between simulations and
experiments. As soon as one checks that measurements
are done within the linear response regime then the in-
tensity of the probing field should not be crucial. Actu-
ally the values of the intensity of the fields usually em-
ployed in numerical simulations of TRM experiments are
well known to satisfy linear response [14,15]. Note that,
in general, similar difficulties are encountered when ana-
lyzing data in both numerical simulations and real exper-
iments, the main difference is the absolute magnitude of
the time scales one can explore in the two cases (up to mi-
croseconds in simulations and between seconds and days
in experiments).

3 TRM and correlation function relaxations

In order to study time scaling in a wide times range
(specially in the aging t � tw regime) experimental-
ists have measured the decay of the TRM [3], which
is strictly related to the zero-field-cooled one through
MZFC = MFC − MTRM, where the field-cooled magne-
tization is practically constant in the glassy phase.

From the numerical simulations point of view the best
quantity one can look at for checking time scaling is the
autocorrelation function C(tw, tw + t). It has much less
fluctuations than any response to an external field. More-
over in the quasi-equilibrium regime where the fluctua-
tion-dissipation theorem (FDT) holds, it gives exact in-
formation on the zero-field-cooled susceptibility via

χ(tw, tw + t) =
1− C(tw, tw + t)

T
· (10)
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Fig. 1. Aging at T = 0.5 with and without an external mag-
netic field after time tw for a 643 system. Waiting times (tw)
range from 103 (leftmost curves) to 106 (rightmost curves).

In the aging regime the connection between correlation
and susceptibility is less trivial. However in the limit of
small perturbing field and large times, where a gener-
alization of the FDT seems to hold [15–17], a relation
between correlation and susceptibility can still be estab-
lished. Then, in general, concerning time scaling, we can
safely assume that the autocorrelation functions decay as
the TRM do.

In this section we try to understand which is the best
scaling for the C(tw, tw + t) data. The measurements have
been taken on 10 samples of a 643 system, at a tempera-
ture T = 0.5, with waiting times ranging up to tw = 106

and measuring times up to t = 108. We have considered
two different experimental situations, that is with or with-
out an external magnetic field after time tw (the evolution
up to time tw being always with no field), in order to check
whether such a small perturbation may change the dy-
namical scaling. The external field intensity h = 0.1 has
been chosen such that the system is in the linear response
regime. If the magnetic field would be applied during all
the experiment we do not expect any sensible difference
with the h = 0 case.

In Figure 1 we show the correlation functions data,
with and without the external magnetic field. As the time
goes on the effect of the magnetic field seems to accu-
mulate and the differences become larger. Note however
that, for any given waiting time tw, the correlation curve
presents the two well known regimes [7,18]: the quasi-
equilibrium one (t < tw) and the aging one (t > tw).

Because we are mainly interested in the scaling in the
aging regime, we have tried, as the simplest analysis, to
collapse the t > tw data using t/tµw as the scaling variable.
The results are shown in Figure 2 and they clearly show
that a value for µ smaller than 1 is needed in order to
collapse the data in the large times limit. Note also that
the presence of an external field seems to decrease sensibly
the value of µ. The errors on the estimation of µ are of
the order of 10−2.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10-310-210-1 1 10 102 103

C
(t

w
 , 

t w
+

t)

t / tw
µ

no field

µ = 0.96

10-310-210-1 1 10 102 103

t / tw
µ

h = 0.1

µ = 0.89

Fig. 2. Best scaling in the aging regime (t > tw) for the data
presented in Figure 1.
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Fig. 3. Full aging (µ = 1) data collapse for the correlations
functions presented in Figure 1. Note that the use of a loga-
rithmic scale improves the quality of data collapsing.

This numerical result may suggest the presence of a
sub-aging regime in the EA model [19] and it could be
interpreted as one more similarity with real spin glasses,
where µ = 0.97 [3]. However a more careful analysis shows
that the correlation functions are perfectly compatible
with a full aging, that is t/tw, scaling. In Figure 3 we
present the results of such an analysis, which has been
done following the one performed on experimental TRM
data in reference [3].

Few comments are in order. Assuming for the correla-
tion C(tw, tw + t) the scaling

C(tw, tw + t) = A

(
t0
t

)α
+ Ĉ(t/tw), (11)

with t0 = 1, then the best values for the A and α parame-
ters seem to be similar to the experimental ones (A = 0.1
and α = 0.02). However, because of the lack of a quantita-
tive criterion for data collapsing, the best collapse is very
often subjective. In this case we have found that, in order
to obtain a good data collapse, the µ parameter must be
fixed to 1 or very close to it. On the other hand, the A
and α parameters are strongly correlated (with a correla-
tion coefficient close to −1) and they can be changed by
a quite large amount without affecting the data collapse.
Then the errors on these parameters are large. In Figure 3
we show the collapse for parameters values being more or
less in the center of the confidence region. We have also
tried to collapse both sets of data (h = 0 and h = 0.1)
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with the same parameters, but it was impossible to obtain
any reasonable data collapse.

Let us note en passant that the strong dependence of
the parameter A on the field is maybe due to a partial
re-initialization induced by the field. Indeed in the numer-
ical experiment where a small field in switched on at time
tw we are actually measuring the correlation between the
configuration recorder at time tw in the absence of any
field and the one at time t which is feeling an external
field. These configurations may partially differ because of
the strong re-initialization effects produced by the appli-
cation of an external magnetic field [24].

In Figure 3 we use the scaling variable log(t + tw) −
log(tw), even if t/tw would be the most natural one when
full aging holds. Our choice is dictated by the need for a
comparison with the collapse of experimental data shown
in Figure 3b of reference [3]. There the scaling vari-
able [(t + tw)1−µ − t1−µw ]/(1 − µ) is used, which tends to
log(t + tw) − log(tw) in the µ → 1 limit. It is well known
that the goodness of a data collapse may depend on the
scales chosen for presenting the data. In the present case,
in the scaling variable log(t + tw) − log(tw) we have bet-
ter collapses that in the variable t/tw, because large times
are “compressed”. Note however that both scaling vari-
ables give very good collapses of our data, the same being
true for the experimental data [20]. Anyhow it is worth to
note that the use of the scaling variable t/tw for checking
full aging and [(t+tw)1−µ−t1−µw ]/(1−µ) for checking sub-
aging makes the life harder to the full aging scenario. This
without considering the fact that there could be additional
logarithmic corrections to the full t/tw scaling [19].

We conclude that it is not easy to obtain precise quan-
titative information in order to distinguish the full aging
from the sub-aging scenario. Moreover the presence of an
external magnetic field, which on a first simple analysis
seems to change the scaling, is in fact irrelevant for the
scaling and it only changes a little bit the fitting parame-
ters.

3.1 A small note on the ZFC susceptibility scaling

The scaling of the zero-field cooled susceptibility has been
already studied in the past, both directly [7] or via the
fluctuation-dissipation relation which links it to the cor-
relation functions scaling [17]. Here we do not repeat this
kind of analysis. We simply would like to present some
new data regarding the ZFC susceptibility scaling.

Indeed very recently Bernardi et al. have proposed the
following scaling for the ZFC susceptibility [21]

χZFC(tw, tw + t) = χ̃(R(tw), L(t)), (12)

where both length scales grow in an algebraic fashion

R(τ) ∝ L(τ) ∝ τaT , (13)

with an exponent linear in the temperature, like for the
off-equilibrium correlation length [8,9,22]. We found that
numerical data obtained with very large simulations are
not compatible with the proposed scaling (see Fig. 4).
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Fig. 4. ZFC susceptibilities in a particular experiment (see
text). If the scaling (12) proposed in reference [21] would be
correct, data in the figure should collapse.

Our numerical experiments are performed in the fol-
lowing way. For any given temperature T1 (which takes
3 values in our case T1 = 0.3, 0.5, 0.7), we start the sim-
ulation from a random configuration and we let evolve
the system at temperature T1 for a number of MCS tw,
such that tT1

w = D where D is a constant that we fixed to
D = 101.5. At this time we switch on a small perturbing
field, we move the temperature to T2 = 0.5 and then we
measure the response of the system (ZFC susceptibility).
From this kind of experiment we have obtained many in-
teresting information on the spin glass low temperature
dynamics which have been published elsewhere [24]. Here
we used again this kind of experiment in order to verify
the scaling (12) proposed in reference [21].

By construction we have that in all the three experi-
ments the length R(tw) is the same and the L(t) is related
to t by the same law, because after time tw we always make
evolve the system at the same temperature. Then if the
scaling (12) would hold, we should find a good data col-
lapse in Figire 4, which is not true. This behavior can be
explained by observing that after the thermalization time
tw(T1) the three experimental situations are not identical:
they have developed a similar correlation length, neverthe-
less the actual configuration is different and the response
to an external perturbation differs.

In reference [21] the authors find a perfect agreement
to the scaling (12). However it must be noted that they use
temperatures in a small range, T ∈ [0.5, 0.7], which cor-
responds to the two uppermost curves in Figure 4 which
indeed almost coincide. Violation to the scaling (12) can
be seen only at lower temperatures, which where not used
in reference [21].

4 AC susceptibility relaxations

Let us briefly remind how these experiments are usually
done. The system is quenched to a low temperature (rang-
ing between 0.6 and 0.9 times the value of Tg) and the AC
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Fig. 5. AC susceptibility for L = 100, T = 0.6 and frequencies
ω=1/P= 0.02 (circles), 0.01 (squares), 0.002 (diamonds), 0.001
(crosses).

susceptibility is recorded. Typical values of the frequency
of the AC field are between 0.1 and 1 Hertz. The amplitude
of the probing AC field is of order 10−2 to 10−1 Oersteds
deep inside the linear response regime. The AC suscepti-
bility is then recorded as a function of time and relaxation
is observed on time scales of order ωt ∼ 1000−5000 corre-
sponding to several thousands of periods of the AC field.
Measurements are then obtained averaging over several
cycles of the AC field in order to obtain χ′ and χ′′ with
enough accuracy (10 cycles is a typical value).

Having in mind the experimental setup we have done
the following experiment. Starting from a random con-
figuration we have measured the AC susceptibility as a
function of time for different frequencies of the AC mag-
netic field. The frequencies of the field are defined as
ω = 1

P where P is the period of the oscillating field in
Monte Carlo steps. The results for the in-phase and out-of-
phase susceptibilities are shown in Figure 5 at temperature
T = 0.6 ' 0.63Tc and field periods P = 50, 100, 500, 1000.
Each point in equations (7) and (8) is obtained by aver-
aging over 10 periods of the field. The curves for χ can
be well fitted to power law decays. The biggest signal is
obtained for the dissipative part χ′′ which can be fitted
to, χ′′(ω, t) = χ′′(ω,∞) +B (ωt)−(1−x) where the param-
eters x and B are expected to be frequency independent
if the scaling t/tw holds. In Table 1 we show the best fit
parameters and we note two facts:

1. Within errors, B and x are essentially ω independent
justifying the validity of the ωt scaling. B is around
0.04 and x is around 0.5 but with a big uncertainty.
More statistics is necessary to determine better the
fitting parameters. Unfortunately, going to large values
of ωt for the smallest ω is computationally prohibitive.

Table 1. Fit parameters for the decay of the out-of-phase sus-
ceptibility. Data have been fitted starting from ωt = 30 up to
the end of available data.

ω χ′′(ω,∞) B x

0.02 0.031(1) 0.033(6) 0.46(7)

0.01 0.033(1) 0.050(10) 0.61(10)

0.002 0.034(1) 0.047(10) 0.57(10)

0.001 0.035(1) 0.023(10) 0.41(10)
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Fig. 6. AC susceptibility for L = 100, T = 0.6 and frequencies
ω = 1/P = 0.02, 0.01, 0.002, 0.001 plotted as a function of ωt
together with the best fits obtained from Table 1.

2. χ′′(ω,∞) seems to systematically increase when ω de-
creases. This result is unexpected. We would rather
expect that χ′′(ω,∞) ∼ ωα with α ' 0.06 (accord-
ing to Fig. 3). There are two possibilities to explain
this discrepancy. First, α is so small that the correct
dependence of χ′′(ω,∞) on ω is masked by the other
parameters of the fit. Second, frequencies are too big
to see the asymptotic ωα behavior. This second pos-
sibility would suggest that frequencies are not still in
the asymptotic low-frequency regime and this could
be related to the discrepancy between the simulation
results in [24] and the real experimental results. Actu-
ally, comparison with the stationary results obtained
for χ under slow cooling suggest indeed that χ′′ is de-
creasing with the frequency for the range of frequencies
explored. More refined statistics is necessary to resolve
this question.

To make evident the ωt scaling for the AC experiment
we show in Figures 6 and 7 the results of Figure 5 plot-
ted vs. ωt. In Figure 6 these are plotted together with
the power laws obtained with the fitting parameters of
Table 1. In Figure 7 the values of the susceptibilities in
the vertical scale have been shifted by an arbitrary quan-
tity to make them coincide. This last procedure is exactly
the same as done in experiments in the Figure 2 of refer-
ence [3] showing the same qualitatively results. Note from
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Fig. 7. Same data as in Figures 5, 6. Following reference [3]
susceptibilities have been shifted on the vertical scale by arbi-
trary amounts to make them collapse.

Figure 5 that the relaxation of the AC susceptibility on
our time scale is as large as in real experiments, the relax-
ing signal being bigger for χ′′ than for χ′. This explains
why the study of χ′′ is usually preferred in laboratory ex-
periments. For χ′′ the amount of relaxation is nearly equal
to the corresponding stationary (ωt→∞) value.

5 Conclusions

In this paper we have made a detailed study of the dynam-
ical scaling behavior of the correlation functions and AC
susceptibilities in the aging regime for spin glasses. The
study has been done applying the scaling behaviors pre-
ferred by the experimentalists and comparing them with
the results obtained in numerical simulations of the three
dimensional Edwards-Anderson model.

The general conclusion is that there is a full agree-
ment between the experimental results measured for TRM
decays and simulations for correlations. This agreement
must be understood in the following sense. All data col-
lected for spin glasses is well compatible with a full aging
scaling scenario, probably with logarithmic corrections, al-
though these subdominant corrections are difficult to be
detected experimentally.

It is also interesting to see how the parameters ob-
tained in the fits of the decay of the correlation function
agree with the equivalent parameters for the TRM in ex-
periments, suggesting a universality in the dynamical scal-
ing of relaxations which is well captured by the Edwards-

Anderson model. A similar conclusion is obtained also for
AC experiments which, in general, fulfill a good ωt scal-
ing law. The collapse of the AC relaxations on a master
curve, by appropriately shifting them by their stationary
values shows a nice agreement with experimental results
and shows how relaxation in disordered systems are de-
scribed (at least in a very good approximation) by a sin-
gle timescale (corresponding to the waiting time in TRM
experiments or to the inverse of the frequency in AC ex-
periments).

Still, the big question must be answered. Why
this good agreement between simulations and experi-
ments is not respected when comparing, at a qualitative
level, chaotic and memory effects between the Edwards-
Anderson model and real spin glasses? [23–25]. It is plau-
sible that for time scales short compared to experimental
time scales some dynamical effects (in particular, chaos
and memory) are not seen in simulations while the full
t/tw scaling is already present in this regime. This would
be a possible explanation if the observed anomalous be-
havior of χ′′(ω,∞) (i.e. the fact that it increases when
the frequency decreases) is a consequence of the shortness
of the timescales involved in the simulation. Further theo-
retical, numerical and experimental studies are needed to
clarify and resolve this controversial issue.

We are grateful to E. Vincent for useful discussions. M.P.
and F.R. acknowledge financial support from a French-
Spanish collaboration (Picasso program and Acciones In-
tegradas Ref. HF1998-0097).
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